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In this Brief Report we report the results of computer simulations on the periodic and noise driving of
two-dimensional square arrays of coupled nonlinear oscillators. We find significant improvement in the output
of these arrays over their one-dimensional counterggrtantified by signal-to-noise ratio in the power spec-
trum at the frequency of the periodic drivingVe also find that, within the limited resolution of our simula-
tions, the one-dimensional scaling laws proposed by Lingéhex. [Phys. RevE 53, 2081(1996] seem to
hold quite well for two-dimensional arrays.

PACS numbds): 05.45.Xt, 05.40.Ca

Over the last 20 years there has been much interest in thEhe array is on a Cartesian grid and each oscillator is
role of noise when bistable oscillators are driven with a sub<oupled to its four nearest neighbors. The equation of motion
threshold periodic signdll,2]. The key observation is that for the (m,n)th oscillator is given by
the noise, at a certain optimum level, aids the transition of
the system between its stable states at a frequency equal to  dXq

— _ 3 H
the frequency of the periodic forcing. This is referred to as gt~ @mn~ DX pFASIN) + N (1)
stochastic resonance and an exhaustive discussion may be
found in the above references. A more recent interest is what T €(Xm—1nT Xm+ 10t Xmn+1~HXmn), (D)

happens when individual oscillators are coupled together so

that the response of one oscillator has a direct impact on theherea andb are constants and and w are the amplitude
behavior of its neighbors. This was addressed by Lindneand angular frequency, respectively, of tteibthreshold
etal. in 1995 and 19943,4] in an investigation of one- periodic forcing.N is a zero-mean, unit-variance, Gaussian
dimensional chains of such oscillators. It was discovered thatoise process with the noise being local to each element and
the response of the systgmeasured as the signal-to-noise uncorrelated with the noise at the other elements. The added
ratio (SNR) of one of the oscillatoflscould be increased over noise is characterized by its varianeg, and is expressed in
that of a single oscillator. Scaling laws were also deduced fodB such that the noise level is 10 lgfir?). € represents the
the variation of the SNR as a function of the number ofstrength of coupling between the elements. We used free
oscillators, noise strength, and coupling strength. boundary conditions at the edges of the array.

In this paper we carry the work further by coupling the We chose to use the parameters 2.1078,b=1.4706,
oscillators in two-dimensional arrays and investigating theA=1.3039, and = w/27=0.116, which were introduced in
role of array size and the effects of the coupling strength$3], so it would be possible to make direct comparison with
between the oscillators. Although two-dimensional arrayshe earlier work. The time evolution of the system was ob-
were considered if5] in the context of noise-enhanced tained by numerically integrating Eql) over 32 cycles of
propagation, no systematic investigation was made of théhe periodic forcing and using 4096 time steps per cycle. The
role of array size and the effects of the coupling strengthsesults presented here represent hundreds of hours of simu-
between the oscillators. We find that not only is the SNRIation on a 450 MHz Apple G4 computer.
significantly increased in a two-dimensional array but also The output of the system was taken from the central ele-
the coupling strength required for best SNR is much smallement of the array and the raw signal thresholded to eliminate
than for one-dimensional arrays. the effects of intrawell motion. A small hysteresis was also

The system studied is comprised of a two-dimensionabpplied to eliminate minor excursions across the barrier be-
square array of coupled, overdamped, nonlinear oscillatordgween the two wells. To assess the switching dynamics of the

system we computed the SNR of the thresholded output sig-

nal. To calculate the SNR we subtracted the background

* Author to whom correspondence should be addressed. Electronieoise at the forcing frequency in the power spectral density
address: nsungar@calpoly.edu and divided this by the local background power. The SNR is
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FIG. 3. Square root of the coupling constant at best SNR plotted
FIG. 1. SNR vs noise level for 121 oscillators arranged in anagainstN'2, whereN is the total number of elements in the two-
11% 11 grid for coupling strengthe=0.1 (W), e=5.0 (X), e=10 dimensional arrays. The “error bars” are our estimates for the un-
(@), and =100 (+). For comparison, the response of a 121- certainty in being able to locate the position of the optimal coupling
element linear array is also plotté®) with a coupling constant and roughly show the breadth of the peak within 1 dB of the best
€=170, which yields the best SNR for this size of array. The linesSNR.

between data points are to guide the eye and the data points have a o . ) )
standard deviation of0.5 dB. elements, it is interesting to examine the role of the coupling

strength. It has been argugdl] that, for a one-dimensional
expressed in decibels and, for our simulations, no windowingrray, the square root of the optimal coupling scales as the
or other preprocessing of the signal was used. To obtainumber of elements in the array. This argument first notes
uncertainties on the SNR results we repeated the simulatiorthat when best SNR is reached the elements of the array are
four times. synchronized, switching in unison with the periodic forcing.
Simulations were run to explore the effect of array sizeThus, excitations are spreading across the whole length of
and coupling strengths. An example of the SNR vs noisahe array. It is then further recognized that the coupling
curves for various coupling strengths is shown in Fig. 1. Forstrength determines the “stiffness” of the array and that the
comparison we also plot the response of the central elemegpeed of propagation of a disturbance across such a system is
of a 121-element, one-dimensional array with its optimalproportional to the square root of the stiffness. Then, since
coupling strength ok=170. It is clear that when the oscil- the size of the one-dimensional arrays is proportional to the
lators are arranged in a two-dimensional array the SNR isumber of elements, it follows that the square root of the
significantly larger than in the one-dimensional case. coupling should increase with the number of elements for
We varied the coupling strength to find the best SNR forbest SNR.
different sized arrays of oscillators and in Fig. 2 plot the best Because the maximum linear dimension in the two-
SNR obtained as a function of the number of oscillators. Fodimensional arrays grows as the square root of the number of
comparison we have superimposed the SNR curve for oneelements, we would expect that the square root of the opti-
dimensional arrays. The two-dimensional arrays appear tmal coupling strength would increase as the square root of
asymptotically approach~33 dB, which is about 8 dB the number of elements. We determined the coupling
greater than the best SNRs that can be obtained using onstrengths that led to the best SNR and Fig. 3 shows that the
dimensional arrays. above scaling law does seem to be followed. An interesting
Since the enhancement of the SNR must be due to thinplication of the above results is that the value of the cou-
communication of excitation or switching across a number opling strength needed to obtain the best SNR is much smaller
(by a factor of the square root of the number of elemyefiats
34 a two-dimensional array oN oscillators than for a one-
dimensional arrangement. It can also be noted that for larger
arrays the exact value of the coupling strength becomes pro-
gressively less important. In fact, for our 833 and 43
X 43 arrays, the coupling can be varied over an order of
magnitude with only~2 dB variation in the SNR. This wid-
ening of the range of optimal coupling & gets larger is
also seen in one-dimensional arrays.
We also found that the optimal noise level, at the optimal
; . . . : coupling, for a given number of oscillators is approximately
0 200 400 600 800 1000 the same as in the one-dimensional case. This is illustrated in
Fig. 1 for the case of 121-element arrays.

In conclusion, our results show clear similarities with the
FIG. 2. Best SNR v\, the total number of elements in the one-dimensional arrays ¢8,4], and some quite striking dif-
array. @, one-dimensional array&lata taken from Ref[4]). M,  ferences. First, the best SNR achievable with two-
two-dimensional arrays di¥2x N2 elements. The best SNR for a dimensional arrays is some 8 dB greater than for one-
single (zero-dimensionaloscillator is~17 dB. dimensional arrays. One may suppose that this occurs
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because the excitation that spreads out from a switched o#y of propagation of the excitation. This might be of interest
cillator can communicate with other oscillators by a numberfor practical applications of stochastic resonance if only
of routes. Thus switching, when it is supposed to occur dursmall coupling strengths were available or preferred.

ing one of the half periods of the periodic forcing, is not  This work has been carried out in support of an optical

blocked by one particularly recalcitrant element as it coulgexperimental system that we are currently building to study
be in the one-dimensional array. array-enhanced stochastic resonance. Results from these ex-

A second feature is the considerably lower couplingPeriments and further refinements of our computer model
strengths that are needed to obtain best SNR compared f&icluding, for example, distributions of coupling strengths
one-dimensional arrays. This is reasonable from a dimen¥ll b€ reported later.
sional standpoint if we follow the argument [gf] and asso- We would like to thank Research Corporation for their
ciate the square root of the coupling strength with the velocsupport of J.P.S.

[1] L. Gammaitoni, P. Hangi, P. Jung, and F. Marchesoni, Rev. A. R. Bulsara, Phys. Rev. Letf5, 3 (1995.

Mod. Phys.70, 223(1998. [4] J. F. Lindner, B. K. Meadows, W. L. Ditto, M. E. Inchiosa, and
[2] The Constructive Role of Noise in Fluctuation Driven Trans- A. R. Bulsara, Phys. Rev. B3, 2081(1996.

port and Stochastic Resonanc®ecial issue of Chadd (3) [5] J. F. Lindner, S. Chandramouli, A. R. Bulsara, M. Locher, and

(1998. W. L. Ditto, Phys. Rev. Lett81, 5048(1998.
[3] J. F. Lindner, B. K. Meadows, W. L. Ditto, M. E. Inchiosa, and



