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In this Brief Report we report the results of computer simulations on the periodic and noise driving of
two-dimensional square arrays of coupled nonlinear oscillators. We find significant improvement in the output
of these arrays over their one-dimensional counterparts~quantified by signal-to-noise ratio in the power spec-
trum at the frequency of the periodic driving!. We also find that, within the limited resolution of our simula-
tions, the one-dimensional scaling laws proposed by Lindneret al. @Phys. Rev.E 53, 2081~1996!# seem to
hold quite well for two-dimensional arrays.

PACS number~s!: 05.45.Xt, 05.40.Ca
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Over the last 20 years there has been much interest in
role of noise when bistable oscillators are driven with a s
threshold periodic signal@1,2#. The key observation is tha
the noise, at a certain optimum level, aids the transition
the system between its stable states at a frequency equ
the frequency of the periodic forcing. This is referred to
stochastic resonance and an exhaustive discussion ma
found in the above references. A more recent interest is w
happens when individual oscillators are coupled togethe
that the response of one oscillator has a direct impact on
behavior of its neighbors. This was addressed by Lind
et al. in 1995 and 1996@3,4# in an investigation of one-
dimensional chains of such oscillators. It was discovered
the response of the system@measured as the signal-to-noi
ratio ~SNR! of one of the oscillators# could be increased ove
that of a single oscillator. Scaling laws were also deduced
the variation of the SNR as a function of the number
oscillators, noise strength, and coupling strength.

In this paper we carry the work further by coupling th
oscillators in two-dimensional arrays and investigating
role of array size and the effects of the coupling streng
between the oscillators. Although two-dimensional arra
were considered in@5# in the context of noise-enhance
propagation, no systematic investigation was made of
role of array size and the effects of the coupling streng
between the oscillators. We find that not only is the SN
significantly increased in a two-dimensional array but a
the coupling strength required for best SNR is much sma
than for one-dimensional arrays.

The system studied is comprised of a two-dimensio
square array of coupled, overdamped, nonlinear oscillat
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The array is on a Cartesian grid and each oscillator
coupled to its four nearest neighbors. The equation of mo
for the (m,n)th oscillator is given by

dxm,n

dt
5axm,n2bxm,n

3 1A sin~vt !1sNm,n~ t !

1e~xm21,n1xm11,n1xm,n1124xm,n!, ~1!

wherea andb are constants andA andv are the amplitude
and angular frequency, respectively, of the~subthreshold!
periodic forcing.N is a zero-mean, unit-variance, Gaussi
noise process with the noise being local to each element
uncorrelated with the noise at the other elements. The ad
noise is characterized by its variances2, and is expressed in
dB such that the noise level is 10 log10(s

2). e represents the
strength of coupling between the elements. We used
boundary conditions at the edges of the array.

We chose to use the parametersa52.1078,b51.4706,
A51.3039, andf 5v/2p50.116, which were introduced in
@3#, so it would be possible to make direct comparison w
the earlier work. The time evolution of the system was o
tained by numerically integrating Eq.~1! over 32 cycles of
the periodic forcing and using 4096 time steps per cycle. T
results presented here represent hundreds of hours of s
lation on a 450 MHz Apple G4 computer.

The output of the system was taken from the central e
ment of the array and the raw signal thresholded to elimin
the effects of intrawell motion. A small hysteresis was a
applied to eliminate minor excursions across the barrier
tween the two wells. To assess the switching dynamics of
system we computed the SNR of the thresholded output
nal. To calculate the SNR we subtracted the backgro
noise at the forcing frequency in the power spectral den
and divided this by the local background power. The SNR
ic
1413 ©2000 The American Physical Society
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expressed in decibels and, for our simulations, no window
or other preprocessing of the signal was used. To ob
uncertainties on the SNR results we repeated the simulat
four times.

Simulations were run to explore the effect of array s
and coupling strengths. An example of the SNR vs no
curves for various coupling strengths is shown in Fig. 1. F
comparison we also plot the response of the central elem
of a 121-element, one-dimensional array with its optim
coupling strength ofe5170. It is clear that when the osci
lators are arranged in a two-dimensional array the SNR
significantly larger than in the one-dimensional case.

We varied the coupling strength to find the best SNR
different sized arrays of oscillators and in Fig. 2 plot the b
SNR obtained as a function of the number of oscillators.
comparison we have superimposed the SNR curve for o
dimensional arrays. The two-dimensional arrays appea
asymptotically approach;33 dB, which is about 8 dB
greater than the best SNRs that can be obtained using
dimensional arrays.

Since the enhancement of the SNR must be due to
communication of excitation or switching across a numbe

FIG. 1. SNR vs noise level for 121 oscillators arranged in
11311 grid for coupling strengthse50.1 ~j!, e55.0 ~3!, e510
~d!, and e5100 ~1!. For comparison, the response of a 12
element linear array is also plotted~l! with a coupling constant
e5170, which yields the best SNR for this size of array. The lin
between data points are to guide the eye and the data points h
standard deviation of60.5 dB.

FIG. 2. Best SNR vsN, the total number of elements in th
array. d, one-dimensional arrays~data taken from Ref.@4#!. j,
two-dimensional arrays ofN1/23N1/2 elements. The best SNR for
single ~zero-dimensional! oscillator is;17 dB.
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elements, it is interesting to examine the role of the coupl
strength. It has been argued@4# that, for a one-dimensiona
array, the square root of the optimal coupling scales as
number of elements in the array. This argument first no
that when best SNR is reached the elements of the array
synchronized, switching in unison with the periodic forcin
Thus, excitations are spreading across the whole lengt
the array. It is then further recognized that the coupli
strength determines the ‘‘stiffness’’ of the array and that
speed of propagation of a disturbance across such a syste
proportional to the square root of the stiffness. Then, si
the size of the one-dimensional arrays is proportional to
number of elements, it follows that the square root of t
coupling should increase with the number of elements
best SNR.

Because the maximum linear dimension in the tw
dimensional arrays grows as the square root of the numbe
elements, we would expect that the square root of the o
mal coupling strength would increase as the square roo
the number of elements. We determined the coupl
strengths that led to the best SNR and Fig. 3 shows that
above scaling law does seem to be followed. An interest
implication of the above results is that the value of the co
pling strength needed to obtain the best SNR is much sma
~by a factor of the square root of the number of elements! for
a two-dimensional array ofN oscillators than for a one
dimensional arrangement. It can also be noted that for la
arrays the exact value of the coupling strength becomes
gressively less important. In fact, for our 33333 and 43
343 arrays, the coupling can be varied over an order
magnitude with only;2 dB variation in the SNR. This wid-
ening of the range of optimal coupling asN gets larger is
also seen in one-dimensional arrays.

We also found that the optimal noise level, at the optim
coupling, for a given number of oscillators is approximate
the same as in the one-dimensional case. This is illustrate
Fig. 1 for the case of 121-element arrays.

In conclusion, our results show clear similarities with t
one-dimensional arrays of@3,4#, and some quite striking dif-
ferences. First, the best SNR achievable with tw
dimensional arrays is some 8 dB greater than for o
dimensional arrays. One may suppose that this occ

n

s
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FIG. 3. Square root of the coupling constant at best SNR plo
againstN1/2, whereN is the total number of elements in the two
dimensional arrays. The ‘‘error bars’’ are our estimates for the
certainty in being able to locate the position of the optimal coupl
and roughly show the breadth of the peak within 1 dB of the b
SNR.
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because the excitation that spreads out from a switched
cillator can communicate with other oscillators by a numb
of routes. Thus switching, when it is supposed to occur d
ing one of the half periods of the periodic forcing, is n
blocked by one particularly recalcitrant element as it co
be in the one-dimensional array.

A second feature is the considerably lower coupli
strengths that are needed to obtain best SNR compare
one-dimensional arrays. This is reasonable from a dim
sional standpoint if we follow the argument of@4# and asso-
ciate the square root of the coupling strength with the vel
ev
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ity of propagation of the excitation. This might be of intere
for practical applications of stochastic resonance if o
small coupling strengths were available or preferred.

This work has been carried out in support of an opti
experimental system that we are currently building to stu
array-enhanced stochastic resonance. Results from thes
periments and further refinements of our computer mo
~including, for example, distributions of coupling strength!
will be reported later.
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